Chemical Engineering Thermodynamics Quiz 1 January 14, 2021

Turn in the completed Excel sheet and the PV plot

Consider a simplified steam turbine/condenser/compressor/boiler/superheater for production of electricity shown in the schematic. Using the steam table at the back of the book, *fill in the Excel table* and use it to *answer the questions*.

The compressor uses 15 kW and has 100% efficiency. The flow rate is 1200 kg/h for all streams. Water Molecular Weight 18.0 g/mol 1 m³ = 10⁶ cm³ Watt = J/s

- a) Determine the shaft work, *W*_s, for the turbine **in kW** (which is kJ/s). Under an adiabatic assumption (no heat loss) at 100% efficiency the shaft work equals the difference in enthalpy, *H*, between the exiting and entering streams.
- b) Calculate the combined heat needed for the boiler and superheater (boiler converts from liquid to vapor and superheater further heats the steam) in kW (which is kJ/s). (*This is the difference in enthalpy (H) between the streams*.)
- c) Take the ratio of the shaft work recovered from the steam turbine minus that used in the compressor; to the heat needed for the boiler to get an idea of how efficient this system is with a turbine at 100% efficiency. Why is this efficiency less than 100%?
- d) The maximum possible efficiency for a heat engine (Carnot cycle) can be shown to be $(T_{\rm H} T_{\rm C})/T_{\rm H}$. Compare this best possible efficiency to your efficiency. (Carefully choose the units of temperature.)
- e) On the log-log *P* vs *V* plot given below show the points 1, 2, 3 and 4. Drawlines connecting the points on this plot to show the cycle. P times V is energy, what energy is represented by the area within the lines you have drawn?

Stream	P (Mpa)	т (°С)	State	q	H (kJ/kg)	HL (kJ/kg)	HV (kJ/kg)	V (m3/kg)	VL (m3/kg)	VV (m3/kg)	S (kJ/kgK)	SL (kJ/kgK)	SV (kJ/kgK)	iso entropic
1	0.121	105	Liquid/Vapor	0.313	1140	440	2680	0.445	0.00105	1.42	3.22	1.36	7.3	
2	3.98	250	Saturated Liquid	0	1090			0.00125			2.79			
3	3.98	250	Saturated Vapor	1	2800			0.0501			6.07			
4	0.121	105	Saturated Vapor	1	2680			1.42			7.3			q=.648

(e)

H, kW

570

-40

-513

15